Accelerated CMR using zonal, parallel and prior knowledge driven imaging methods
نویسندگان
چکیده
Accelerated imaging is highly relevant for many CMR applications as competing constraints with respect to spatiotemporal resolution and tolerable scan times are frequently posed. Three approaches, all involving data undersampling to increase scan efficiencies, are discussed in this review. Zonal imaging can be considered a niche but nevertheless has found application in coronary imaging and CMR flow measurements. Current work on parallel-transmit systems is expected to revive the interest in zonal imaging techniques. The second and main approach to speeding up CMR sequences has been parallel imaging. A wide range of CMR applications has benefited from parallel imaging with reduction factors of two to three routinely applied for functional assessment, perfusion, viability and coronary imaging. Large coil arrays, as are becoming increasingly available, are expected to support reduction factors greater than three to four in particular in combination with 3D imaging protocols. Despite these prospects, theoretical work has indicated fundamental limits of coil encoding at clinically available magnetic field strengths. In that respect, alternative approaches exploiting prior knowledge about the object being imaged as such or jointly with parallel imaging have attracted considerable attention. Five to eight-fold scan accelerations in cine and dynamic CMR applications have been reported and image quality has been found to be favorable relative to using parallel imaging alone.With all acceleration techniques, careful consideration of the limits and the trade-off between acceleration and occurrence of artifacts that may arise if these limits are breached is required. In parallel imaging the spatially varying noise has to be considered when measuring contrast- and signal-to-noise ratios. Also, temporal fidelity in images reconstructed with prior knowledge driven methods has to be studied carefully.
منابع مشابه
Clinical feasibility of accelerated, high spatial resolution myocardial perfusion imaging.
OBJECTIVES The aim of this study was to assess the clinical feasibility and diagnostic performance of an acceleration technique based on k-space and time (k-t) sensitivity encoding (SENSE) for rapid, high-spatial resolution cardiac magnetic resonance (CMR) myocardial perfusion imaging. BACKGROUND The assessment of myocardial perfusion is of crucial importance in the evaluation of patients wit...
متن کاملAccelerated cardiovascular magnetic resonance of the mouse heart using self-gated parallel imaging strategies does not compromise accuracy of structural and functional measures
BACKGROUND Self-gated dynamic cardiovascular magnetic resonance (CMR) enables non-invasive visualization of the heart and accurate assessment of cardiac function in mouse models of human disease. However, self-gated CMR requires the acquisition of large datasets to ensure accurate and artifact-free reconstruction of cardiac cines and is therefore hampered by long acquisition times putting high ...
متن کاملFirst-pass myocardial perfusion imaging with whole ventricular coverage using L1-SPIRIT accelerated spiral trajectories
Background First-pass perfusion imaging using cardiac magnetic resonance (CMR) has become clinically applicable as an important tool for diagnosing coronary artery disease. We have recently demonstrated that high quality firstpass images can be acquired with an optimized spiral pulse sequence, but this sequence is only capable of imaging 3 short axis slices of the heart for a maximum heart rate...
متن کاملLocalized spatio-temporal constraints for accelerated CMR perfusion.
PURPOSE To develop and evaluate an image reconstruction technique for cardiac MRI (CMR) perfusion that uses localized spatio-temporal constraints. METHODS CMR perfusion plays an important role in detecting myocardial ischemia in patients with coronary artery disease. Breath-hold k-t-based image acceleration techniques are typically used in CMR perfusion for superior spatial/temporal resolutio...
متن کاملMRXCAT: Realistic numerical phantoms for cardiovascular magnetic resonance
BACKGROUND Computer simulations are important for validating novel image acquisition and reconstruction strategies. In cardiovascular magnetic resonance (CMR), numerical simulations need to combine anatomical information and the effects of cardiac and/or respiratory motion. To this end, a framework for realistic CMR simulations is proposed and its use for image reconstruction from undersampled ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Cardiovascular Magnetic Resonance
دوره 10 شماره
صفحات -
تاریخ انتشار 2008